Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Understanding human perceptions of robot performance is crucial for designing socially intelligent robots that can adapt to human expectations. Current approaches often rely on surveys, which can disrupt ongoing human–robot interactions. As an alternative, we explore predicting people’s perceptions of robot performance using non-verbal behavioral cues and machine learning techniques. We contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in Virtual Reality, together with perceptions of robot performance provided by users on a 5-point scale. We then analyze how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression and spatial behavior features). Our results suggest that facial expressions alone provide useful information, but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques outperformed humans’ predictions in most cases. Further, when predicting robot performance as a binary classification task on unseen users’ data, the F1-Score of machine learning models more than doubled that of predictions on a 5-point scale. This suggested good generalization capabilities, particularly in identifying performance directionality over exact ratings. Based on these findings, we conducted a real-world demonstration where a mobile robot uses a machine learning model to predict how a human who follows it perceives it. Finally, we discuss the implications of our results for implementing these supervised learning models in real-world navigation. Our work paves the path to automatically enhancing robot behavior based on observations of users and inferences about their perceptions of a robot.more » « lessFree, publicly-accessible full text available April 18, 2026
- 
            In Human–Robot Interaction, researchers typically utilize in-person studies to collect subjective perceptions of a robot. In addition, videos of interactions and interactive simulations (where participants control an avatar that interacts with a robot in a virtual world) have been used to quickly collect human feedback at scale. How would human perceptions of robots compare between these methodologies? To investigate this question, we conducted a 2x2 between-subjects study (N=160), which evaluated the effect of the interaction environment (Real vs. Simulated environment) and participants’ interactivity during human-robot encounters (Interactive participation vs. Video observations) on perceptions about a robot (competence, discomfort, social presentation, and social information processing) for the task of navigating in concert with people. We also studied participants’ workload across the experimental conditions. Our results revealed a significant difference in the perceptions of the robot between the real environment and the simulated environment. Furthermore, our results showed differences in human perceptions when people watched a video of an encounter versus taking part in the encounter. Finally, we found that simulated interactions and videos of the simulated encounter resulted in a higher workload than real-world encounters and videos thereof. Our results suggest that findings from video and simulation methodologies may not always translate to real-world human–robot interactions. In order to allow practitioners to leverage learnings from this study and future researchers to expand our knowledge in this area, we provide guidelines for weighing the tradeoffs between different methodologies.more » « lessFree, publicly-accessible full text available December 31, 2025
- 
            A major challenge to deploying robots widely is navigation in human-populated environments, commonly referred to associal robot navigation. While the field of social navigation has advanced tremendously in recent years, the fair evaluation of algorithms that tackle social navigation remains hard because it involves not just robotic agents moving in static environments but also dynamic human agents and their perceptions of the appropriateness of robot behavior. In contrast, clear, repeatable, and accessible benchmarks have accelerated progress in fields like computer vision, natural language processing and traditional robot navigation by enabling researchers to fairly compare algorithms, revealing limitations of existing solutions and illuminating promising new directions. We believe the same approach can benefit social navigation. In this article, we pave the road toward common, widely accessible, and repeatable benchmarking criteria to evaluate social robot navigation. Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a design of a social navigation metrics framework to make it easier to compare results from different simulators, robots, and datasets.more » « lessFree, publicly-accessible full text available June 30, 2026
- 
            We interviewed 8 individuals from industry and academia to better understand how they valued different aspects of social robot navigation. Interviewees were asked to rank the importance of 10 measures commonly used to evaluate social navigation policies. Interviewees were then asked open-ended questions about social navigation, and how they think about evaluating the challenges they face. Our interviews with industry and academic experts in social navigation revealed that avoiding collisions was the only universally important measure. Beyond the safety consideration of avoiding collisions, roboticists have varying priorities regarding social navigation. Given the high priority interviewees placed on safety, we recommend that social navigation approaches should first aim to ensure safety. Once safety is ensured, we recommend that each social navigation algorithm be evaluated using the measures most relevant to the intended application domain.more » « less
- 
            An overarching goal of Artificial Intelligence (AI) is creating autonomous, social agents that help people. Two important challenges, though, are that different people prefer different assistance from agents and that preferences can change over time. Thus, helping behaviors should be tailored to how an individual feels during the interaction. We hypothesize that human nonverbal behavior can give clues about users' preferences for an agent's helping behaviors, augmenting an agent's ability to computationally predict such preferences with machine learning models. To investigate our hypothesis, we collected data from 194 participants via an online survey in which participants were recorded while playing a multiplayer game. We evaluated whether the inclusion of nonverbal human signals, as well as additional context (e.g., via game or personality information), led to improved prediction of user preferences between agent behaviors compared to explicitly provided survey responses. Our results suggest that nonverbal communication -- a common type of human implicit feedback -- can aid in understanding how people want computational agents to interact with them.more » « less
- 
            We propose a demonstration of the Social Environment for Autonomous Navigation with Virtual Reality (VR) for advancing research in Human-Robot Interaction. In our demonstration, a user controls a virtual avatar in simulation and performs directed navigation tasks with a mobile robot in a warehouse environment. Our demonstration shows how researchers can leverage the immersive nature of VR to study robot navigation from a user-centered perspective in densely populated environments while avoiding physical safety concerns common with operating robots in the real world. This is important for studying interactions with robots driven by algorithms that are early in their development lifecycle.more » « less
- 
            Much prior work on creating social agents that assist users relies on preconceived assumptions of what it means to be helpful. For example, it is common to assume that a helpful agent just assists with achieving a user’s objective. However, as assistive agents become more widespread, human-agent interactions may be more ad-hoc, providing opportunities for unexpected agent assistance. How would this affect human notions of an agent’s helpfulness? To investigate this question, we conducted an exploratory study (N=186) where participants interacted with agents displaying unexpected, assistive behaviors in a Space Invaders game and we studied factors that may influence perceived helpfulness in these interactions. Our results challenge the idea that human perceptions of the helpfulness of unexpected agent assistance can be derived from a universal, objective definition of help. Also, humans will reciprocate unexpected assistance, but might not always consider that they are in fact helping an agent. Based on our findings, we recommend considering personalization and adaptation when designing future assistive behaviors for prosocial agents that may try to help users in unexpected situations.more » « less
- 
            Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)While neural network binary classifiers are often evaluated on metrics such as Accuracy and F1-Score, they are commonly trained with a cross-entropy objective. How can this training-evaluation gap be addressed? While specific techniques have been adopted to optimize certain confusion matrix based metrics, it is challenging or impossible in some cases to generalize the techniques to other metrics. Adversarial learning approaches have also been proposed to optimize networks via confusion matrix based metrics, but they tend to be much slower than common training methods. In this work, we propose a unifying approach to training neural network binary classifiers that combines a differentiable approximation of the Heaviside function with a probabilistic view of the typical confusion matrix values using soft sets. Our theoretical analysis shows the benefit of using our method to optimize for a given evaluation metric, such as F1-Score, with soft sets, and our extensive experiments show the effectiveness of our approach in several domains.more » « less
- 
            null (Ed.)Robots' spatial positioning is a useful communication modality in social interactions. For example, in the context of group conversations, certain types of positioning signal membership to the group interaction. How does robot embodiment influence these perceptions? To investigate this question, we conducted an online study in which participants observed renderings of several robots in a social environment, and judged whether the robots were positioned to take part in a group conversation with other humans in the scene. Our results suggest that robot embodiment can influence perceptions of conversational group membership. An important factor to consider in this regard is whether robot embodiment leads to a discernible orientation for the agent.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available